วันเสาร์ที่ 21 สิงหาคม พ.ศ. 2553

เกร็ดเล็กเกล็ดน้อย

แคลคูลัส เป็นสาขาหลักของคณิตศาสตร์ซึ่งพัฒนามาจากพีชคณิต เรขาคณิต และปัญหาทางฟิสิกส์ แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้
แนวคิดแรกคือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น การหา ความเร็ว, ความเร่ง หรือความชันของเส้นโค้ง บนจุดที่กำหนดให้. ทฤษฎีของอนุพันธ์หลายส่วนได้แรงบันดาลใจจากปัญหาทางฟิสิกส์
แนวคิดที่สองคือ แคลคูลัสเชิงปริพันธ์ (Integral Calculus) เป็นทฤษฎีที่ได้แรงบันดาลใจจากการคำนวณหาพื้นที่หรือปริมาตรของรูปทรงทางเรขาคณิตต่าง ๆ. ทฤษฎีนี้ใช้กราฟของฟังก์ชันแทนรูปทรงทางเรขาคณิต และใช้ทฤษฎีปริพันธ์ (หรืออินทิเกรต) เป็นหลักในการคำนวณหาพื้นที่และปริมาตร
ทั้งสองแนวคิดที่กำเนิดจากปัญหาที่ต่างกันกลับมีความสัมพันธ์กันลึกซึ้ง โดยทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่า แท้จริงแล้วทฤษฎีทั้งสองเปรียบเสมือนเป็นด้านทั้งสองของเหรียญอันเดียวกัน นั่นคือเป็นสิ่งเดียวกันเพียงแต่มองคนละมุมเท่านั้น (โดยคร่าว ๆ เรากล่าวได้ว่าอนุพันธ์และปริพันธ์เป็นฟังก์ชันผกผันของ กันและกัน). ในการสอนแคลคูลัสเพื่อความเข้าใจตัวทฤษฎีอย่างลึกซึ้ง ควรกล่าวถึงทั้งสองทฤษฎีและความสัมพันธ์นี้ก่อน แต่การศึกษาในปัจจุบันมักจะกล่าวถึงแคลคูลัสเชิงอนุพันธ์ก่อนเพียงอย่าง เดียว เนื่องจากนำไปใช้งานได้ง่ายกว่า
อนึ่ง การศึกษาแคลคูลัสอย่างละเอียดในเวลาต่อมา ได้ทำให้เกิดศาสตร์ใหม่ ๆ ทางคณิตศาสตร์มากมาย เช่น คณิตวิเคราะห์ และ ทฤษฎีการวัด เป็นต้น


ประวัติ

มีการโต้เถียงกันว่านิวตันหรือไลบ์นิซ ที่เป็นผู้ที่ค้นพบแนวคิดหลักของแคลคูลัสก่อน ความจริงนั้นไม่มีใครรู้ได้ สิ่งที่ยิ่งใหญ่ที่สุด ที่ไลบ์นิซได้พัฒนาให้กับแคลคูลัส คือ เครื่องหมายของเขา เขามักจะใช้เวลาเป็นวัน ๆ นั่งคิดถึงสัญลักษณ์ที่เหมาะสม ที่จะแทนที่แนวคิดทางคณิตศาสตร์ อย่างไรก็ตาม การโต้เถียงกันระหว่างไลบ์นิซ และนิวตัน ได้แบ่งแยกนักคณิตศาสตร์ที่พูดภาษาอังกฤษ ออกจากนักคณิตศาสตร์ในยุโรป เป็นเวลานานหลายปี ซึ่งทำให้คณิตศาสตร์ในอังกฤษล้าหลังกว่ายุโรปเป็นเวลานาน เครื่องหมายที่นิวตันใช้นั้น คล่องตัวน้อยกว่าของไลบ์นิซอย่างเห็นได้ชัด แต่ก็ยังใช้กันในอังกฤษจน Analytical Society ได้ใช้เครื่องหมายของไลบ์นิซในศตวรรษที่ 19 ตอนต้น สันนิษฐานกันว่า นิวตันค้นพบแนวคิดเกี่ยวกับแคลคูลัสก่อน แต่อย่างไรก็ตาม ไลบ์นิซเป็นผู้ที่เผยแพร่ก่อน ทุกวันนี้เป็นที่เชื่อกันว่า ทั้งนิวตันและไลบ์นิซต่างก็ค้นพบแคลคูลัสด้วยตนเอง
ผู้ที่ได้ชื่อว่าเป็นผู้พัฒนาวิชาแคลคูลัสนอกจากนี้คือ เดส์การตส์, Barrow, เดอ แฟร์มาต์, ฮอยเก้นส์ และ วอลลิส โดยเฉพาะ เดอ แฟร์มาต์ ซึ่งบางครั้งได้รับการยกย่องว่าเป็น บิดาแห่งแคลคูลัสเชิงอนุพันธ์. นักคณิตศาสตร์ชาวญี่ปุ่น โควะ เซกิ ซึ่งมีชีวิตอยู่ในช่วงเวลาเดียวกันกับ ไลบ์นิซ และนิวตัน ได้ค้นพบหลักการพื้นฐานบางอย่างเกี่ยวกับ แคลคูลัสเชิงปริพันธ์ แต่เขาไม่เป็นที่รู้จักในโลกตะวันตกในขณะนั้น และเขาก็ไม่ได้ติดต่อกับนักวิชาการชาวตะวันตกเลย

[แก้] แคลคูลัสเชิงอนุพันธ์

อนุพันธ์ (derivative) คือการหาค่าความเปลี่ยนแปลงของตัวแปรหนึ่ง เมื่ออีกตัวแปรหนึ่งเปลี่ยนแปลงในปริมาณที่น้อยมากๆ บางทีอนุพันธ์ที่เราจะได้พบครั้งแรกในโรงเรียนคือ สูตร อัตราเร็ว = ระยะทาง/เวลา สำหรับวัตถุที่เคลื่อนที่ด้วยอัตราเร็วคงที่ อัตราเร็วของคุณซึ่งเป็นอนุพันธ์ที่บอกการเปลี่ยนแปลงตำแหน่งในระยะเวลา หนึ่ง วิชาแคลคูลัสพัฒนาขึ้น เพื่อจัดการกับปัญหาที่ซับซ้อนและเป็นธรรมชาติกว่านี้ ซึ่งอัตราเร็วของคุณอาจเปลี่ยนแปลงได้
เมื่อเรากล่าวถึงรายละเอียดแล้ว แคลคูลัสเชิงอนุพันธ์ นิยามอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง (อนุพันธ์) ระหว่างค่าของฟังก์ชัน กับตัวแปรของฟังก์ชัน นิยามจริงๆ ของอนุพันธ์คือ ลิมิตของอัตราส่วนในการเปลี่ยนแปลง (difference quotient). อนุพันธ์คือหัวใจของวิทยาศาสตร์กายภาพ กฎการเคลื่อนที่ของนิวตัน แรง = มวล×ความเร่ง มีความหมายในแคลคูลัส เพราะว่า ความเร่งเป็นอนุพันธ์ค่าหนึ่ง ทฤษฎีแม่เหล็กไฟฟ้าของแมกซ์เวล และทฤษฎีแรงโน้มถ่วงของไอน์สไตน์ (สัมพัทธภาพทั่วไป) นั่นได้กล่าวถึงด้วยภาษาของแคลคูลัสเชิงอนุพันธ์ เช่นเดียวกันกับทฤษฎีพื้นฐานของวงจรไฟฟ้า
อนุพันธ์ของฟังก์ชัน กล่าวถึงกราฟของฟังก์ชันนั้นในช่วงสั้น ๆ ซึ่งทำให้เราสามารถหาจุดสูงสุด และจุดต่ำสุด ของฟังก์ชันได้ เพราะว่าที่จุดเหล่านั้นกราฟจะขนานกับแกนราบ ดิเฟอเรนเชียล แคลคูลัสยังมีการประยุกต์ใช้อื่นๆอีก เช่น ระเบียบวิธีของนิวตัน (Newton's Method) ซึ่งเป็นวิธีในการหาค่ารากของฟังก์ชัน โดยการประมาณค่าโดยเส้นสัมผัส ดังนั้นแคลคูลัสเชิงอนุพันธ์ จึงสามารถนำไปประยุกต์ใช้กับหลากหลายคำถาม ซึ่งถ้ามองแค่ผิวเผินอาจคิดว่า ไม่อาจใช้แคลคูลัสจัดการได้

[แก้] แคลคูลัสเชิงปริพันธ์

แคลคูลัสเชิงปริพันธ์ศึกษาวิธีการหาปริพันธ์ (อินทิกรัล, Integral) ของฟังก์ชัน ซึ่งอาจนิยามจากลิมิตของผลรวมของพจน์ (ซึ่งเรียกว่าลิมิตของผลรวมรีมันน์) แต่ละพจน์นั้นคือพื้นที่ที่เป็นสี่เหลี่ยมผืนผ้าแต่ละแถบใต้กราฟของฟังก์ชัน ทำให้การอินทิเกรตเป็นวิธีที่ได้ผลวิธีหนึ่งในการหาพื้นที่ใต้กราฟ และพื้นที่ผิว และปริมาตรของแข็งเช่นทรงกลมและทรงกระบอก

[แก้] พื้นฐานของแคลคูลัส

พื้นฐานที่เคร่งครัดของแคลคูลัส มีฐานมาจาก แนวคิดของฟังก์ชัน และลิมิต มันรวมเทคนิคของพีชคณิตพื้นฐาน และการอุปนัยเชิงคณิตศาสตร์ การศึกษาพื้นฐานของแคลคูลัสสมัยใหม่ รู้จักกันในชื่อ การวิเคราะห์เชิงจริง ซึ่งประกอบด้วย นิยามที่เคร่งครัด และบทพิสูจน์ของทฤษฎีของแคลคูลัส เช่นทฤษฎีการวัด และการวิเคราะห์เชิงฟังก์ชัน

[แก้] ทฤษฎีบทมูลฐานของแคลคูลัส เบื้องต้น

ทฤษฎีบทมูลฐานของแคลคูลัสกล่าว ว่า การหาอนุพันธ์และการหาปริพันธ์เป็นวิธีการที่ตรงกันข้ามกัน กล่าวคือ ถ้าเราสร้างฟังก์ชันที่เป็นปริพันธ์ของฟังก์ชันหนึ่งขี้นมา อนุพันธ์ของฟังก์ชันที่เราสร้าง ก็จะเท่ากับฟังก์ชันนั้น นอกจากนี้ เรายังหาปริพันธ์จำกัดเขตได้ด้วยการกำหนดค่าให้กับปฏิยานุพันธ์
ทฤษฎีบทมูลฐานของแคลคูลัสเขียนในรูปสัญลักษณ์คณิตศาสตร์ได้ดังนี้: ถ้า f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และ F เป็นปฏิยานุพันธ์ของ f บนช่วง [a, b] แล้ว
\int_{a}^{b} f (x) \,dx = F (b) - F (a)
และสำหรับทุก x ในช่วง [a, b] จะได้ว่า
\frac{d}{dx}\int_a^x f (t) \, dt = f (x)
ความจริงข้อนี้ปรากฏแก่ทั้งนิวตัน และไลบ์นิซ ซึ่งเป็นกุญแจนำไปสู่ การขยายผลลัพธ์เชิงวิเคราะห์อย่างมากมายหลังจากงานของทั้งสองเป็นที่รู้จัก. ความเชื่อมโยงนี้ ทำให้เราสามารถย้อนความเปลี่ยนแปลงทั้งหมดในฟังก์ชันในช่วงหนึ่ง จากอัตราการเปลี่ยนแปลงในขณะใดขณะหนึ่ง โดยการหาปริพันธ์ของส่วนหลัง. ทฤษฎีบทมูลฐานนี้ยังให้วิธีในการคำนวณหา ปริพันธ์จำกัดเขต ด้วยวิธีทางพีชคณิตเป็นจำนวนมาก โดยไม่ต้องใช้วิธีการหาลิมิต ด้วยการหาปฏิยานุพันธ์. ทฤษฎีบทนี้ยังอนุญาตให้เราแก้สมการเชิงอนุพันธ์ ซึ่งคือสมการที่เกี่ยวข้องกันระหว่าง ฟังก์ชันที่ไม่ทราบค่า และอนุพันธ์ของมัน. สมการเชิงอนุพันธ์นั้นมีอยู่ทั่วไปในวิทยาศาสตร์

[แก้] การประยุกต์นำมาใช้

การพัฒนาและการใช้แคลคูลัสได้ขยายผลไปแทบทุกส่วนของการใช้ชีวิตในยุคใหม่ มันเป็นพื้นฐานของวิทยาศาสตร์เกือบทุกสาขาโดยเฉพาะ ฟิสิกส์ การพัฒนาสมัยใหม่เกือบทั้งหมด เช่น เทคนิคการก่อสร้าง การบิน และเทคโนโลยีอื่น ๆ เกือบทั้งหมด มีพื้นฐานมาจากแคลคูลัส
แคลคูลัสได้ขยายไปสู่ สมการเชิงอนุพันธ์ แคลคูลัสเวกเตอร์ แคลคูลัสของการเปลี่ยนแปลง การวิเคราะห์เชิงซ้อน แคลคูลัสเชิงเวลา แคลคูลัสกณิกนันต์ และ ทอพอโลยีเชิงอนุพันธ์


ทฤษฎีบทมูลฐานของแคลคูลัส กล่าวว่าอนุพันธ์ และปริพันธ์ ซึ่งเป็นการดำเนินการหลักในแคลคูลัสนั้นผกผันกัน ซึ่งหมายความว่าถ้านำฟังก์ชันต่อเนื่องใดๆ มาหาปริพันธ์ แล้วนำมาหาอนุพันธ์ เราจะได้ฟังก์ชันเดิม ทฤษฎีบทนี้เหมือนว่าเป็นหัวใจสำคัญของแคลคูลัสที่นับได้ว่าเป็นทฤษฎีบท มูลฐานของทั้งสาขานี้ ผลต่อเนื่องที่สำคัญของทฤษฎีบทนี้ ซึ่งบางทีเรียกว่าทฤษฎีบทมูลฐานของแคลคูลัสบทที่สองนั้นทำให้เราสามารถคำนวณ หาปริพันธ์โดยใช้ปฏิยานุพันธ์ ของฟังก์ชัน

ภาพโดยทั่วไป

โดยทั่วไปแล้ว ทฤษฎีบทนี้กล่าวว่าผลรวมของการเปลี่ยนแปลงที่น้อยยิ่ง ในปริมาณในช่วงเวลา (หรือปริมาณอื่นๆ) นั้นเข้าใกล้การเปลี่ยนแปลงรวม
เพื่อให้เห็นด้วยกับข้อความนี้ เราจะเริ่มด้วยตัวอย่างนี้ สมมติว่าอนุภาคเดินทางบนเส้นตรงโดยมีตำแหน่งจากฟังก์ชัน x(t) เมื่อ t คือเวลา อนุพันธ์ของฟังก์ชันนี้เท่ากับความเปลี่ยนแปลงที่น้อยมากๆของ x ต่อช่วงเวลาที่น้อยมากๆ (แน่นอนว่าอนุพันธ์ต้องขึ้นอยู่กับเวลา) เรานิยามความเปลี่ยนแปลงของระยะทางต่อช่วงเวลาว่าเป็นอัตราเร็ว v ของอนุภาค ด้วยสัญกรณ์ของไลบ์นิซ
\frac{dx}{dt} = v(t)
เมื่อจัดรูปสมการใหม่จะได้
dx = v(t)\,dt
จากตรรกะข้างต้น ความเปลี่ยนแปลงใน x ที่เรียกว่า Δx คือผลรวมของการเปลี่ยนแปลงที่น้อยมากๆ dx มันยังเท่ากับผลรวมของผลคูณระหว่างอนุพันธ์และเวลาที่น้อยมากๆ ผลรวมอนันต์นี้คือปริพันธ์ ดังนั้นการหาปริพันธ์ทำให้เราสามารถคืนฟังก์ชันต้นของมันจากอนุพันธ์ เช่นเดียวกัน การดำเนินการนี้ผกผันกัน หมายความว่าเราสามารถหาอนุพันธ์ของผลการหาปริพันธ์ ซึ่งจะได้ฟังก์ชันอัตราเร็วคืนมาได้

[แก้] เนื้อหาของทฤษฎีบท

ทฤษฎีบทนี้ว่าไว้ว่า
ให้ f เป็นฟังก์ชันต่อเนื่องบนช่วง [a, b] ถ้า F เป็นฟังก์ชันที่นิยามสำหรับ x ที่อยู่ใน [a, b] ว่า
F(x) = \int_a^x f(t)\, dt
แล้ว
F'(x) = f(x)\,
สำหรับทุก x ที่อยู่ใน [a, b]
ให้ f เป็นฟังก์ชันต่อเนื่องบนช่วง [a, b] ถ้า F เป็นฟังก์ชันที่
f(x) = F'(x)\,สำหรับทุก x ที่อยู่ใน [a, b]
แล้ว
\int_a^b f(x)\,dx = F(b) - F(a)

[แก้] ผลที่ตามมา

ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b]. ถ้า F เป็นฟังก์ชันที่
f(x) = F'(x)\, สำหรับทุก x ที่อยู่ใน [a, b]
แล้ว
F(x) = \int_a^x f(t)\,dt + F(a)
และ
f(x) = \frac{d}{dx} \int_a^x f(t)\,dt

[แก้] บทพิสูจน์

[แก้] ส่วนที่ 1

กำหนดให้
F(x) = \int_{a}^{x} f(t) dt
ให้ x1 และ x1 + Δx อยู่ในช่วง [a, b] จะได้
F(x_1) = \int_{a}^{x_1} f(t) dt
และ
F(x_1 + \Delta x) = \int_{a}^{x_1 + \Delta x} f(t) dt
นำทั้งสองสมการมาลบกันได้
F(x_1 + \Delta x) - F(x_1) = \int_{a}^{x_1 + \Delta x} f(t) dt - \int_{a}^{x_1} f(t) dt \qquad (1)
เราสามารถแสดงได้ว่า
\int_{a}^{x_1} f(t) dt + \int_{x_1}^{x_1 + \Delta x} f(t) dt = \int_{a}^{x_1 + \Delta x} f(t) dt
(ผลรวมพื้นที่ของบริเวณที่อยู่ติดกัน จะเท่ากับ พื้นที่ของบริเวณทั้งสองรวมกัน)
ย้ายข้างสมการได้
\int_{a}^{x_1 + \Delta x} f(t) dt - \int_{a}^{x_1} f(t) dt = \int_{x_1}^{x_1 + \Delta x} f(t) dt
นำไปแทนค่าใน (1) จะได้
F(x_1 + \Delta x) - F(x_1) = \int_{x_1}^{x_1 + \Delta x} f(t) dt \qquad (2)
ตามทฤษฎีบทค่าเฉลี่ยสำหรับการอินทิเกรต จะมี c อยู่ในช่วง [x1, x1 + Δx] ที่ทำให้
\int_{x_1}^{x_1 + \Delta x} f(t) dt = f(c) \Delta x
แทนค่าลงใน (2) ได้
F(x_1 + \Delta x) - F(x_1) = f(c) \Delta x \,
หารทั้งสองข้างด้วย Δx จะได้
\frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = f(c)
สังเกตว่าสมการข้างซ้าย คือ อัตราส่วนเชิงผลต่างของนิวตัน (Newton's difference quotient) ของ F ที่ x1
ใส่ลิมิต Δx → 0 ทั้งสองข้างของสมการ
\lim_{\Delta x \to 0} \frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = \lim_{\Delta x \to 0} f(c)
สมการข้างซ้ายจะเป็นอนุพันธ์ของ F ที่ x1
F'(x_1) = \lim_{\Delta x \to 0} f(c) \qquad (3)
เพื่อหาลิมิตของสมการข้างขวา เราจะใช้ทฤษฎีบท squeeze เพราะว่า c อยู่ในช่วง [x1, x1 + Δx] ดังนั้น x1cx1 + Δx
จาก \lim_{\Delta x \to 0} x_1 = x_1 และ \lim_{\Delta x \to 0} x_1 + \Delta x = x_1
ตามทฤษฎีบท squeeze จะได้ว่า
\lim_{\Delta x \to 0} c = x_1
แทนค่าลงใน (3) จะได้
F'(x_1) = \lim_{c \to x_1} f(c)
ฟังก์ชัน f มีความต่อเนื่องที่ c ดังนั้น เราสามารถนำลิมิตแทนในฟังก์ชันได้ ดังนั้น
F'(x_1) = f(x_1) \,
จบการพิสูจน์
(Leithold et al, 1996)

[แก้] ส่วนที่ 2

ต่อไปนี้คือบทพิสูจน์ลิมิตโดย ผลรวมของรีมันน์-ดาบูต์

ภาพแสดงแนวคิดของ ผลรวมรีมันน์-ดาบูต์ ซึ่งใช้ในการประมาณพื้นที่ภายใต้กราฟใด ๆ ด้วยกราฟแท่งจำนวนมาก
ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และ F เป็นปฏิยานุพันธ์ของ f พิจารณานิพจน์ต่อไปนี้
F(b) - F(a)\,
ให้ a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b จะได้
F(b) - F(a) = F(x_n) - F(x_0) \,
แล้วบวกและลบด้วยจำนวนเดียวกัน จะได้
\begin{matrix} F(b) - F(a) & = & F(x_n)\,+\,[-F(x_{n-1})\,+\,F(x_{n-1})]\,+\,\ldots\,+\,[-F(x_1) + F(x_1)]\,-\,F(x_0) \, \\
& = & [F(x_n)\,-\,F(x_{n-1})]\,+\,[F(x_{n-1})\,+\,\ldots\,-\,F(x_1)]\,+\,[F(x_1)\,-\,F(x_0)] \, \end{matrix}
เขียนใหม่เป็น
F(b) - F(a) = \sum_{i=1}^n [F(x_i) - F(x_{i-1})] \qquad (1)
เราจะใช้ทฤษฎีบทค่าเฉลี่ย ซึ่งกล่าวว่า
ให้ f เป็นฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b] และมีอนุพันธ์บนช่วง (a, b) แล้ว จะมี c อยู่ใน (a, b) ที่ทำให้
f'(c) = \frac{f(b) - f(a)}{b - a}
และจะได้
f'(c)(b - a) = f(b) - f(a) \,
ฟังก์ชัน F เป็นฟังก์ชันที่หาอนุพันธ์ได้ในช่วง [a, b] ดังนั้น มันจะหาอนุพันธ์และมีความต่อเนื่องบนแต่ละช่วง xi-1 ได้ ตามทฤษฎีบทค่าเฉลี่ย จะได้
F(x_i) - F(x_{i-1}) = F'(c_i)(x_i - x_{i-1}) \,
แทนค่าลงใน (1) จะได้
F(b) - F(a) = \sum_{i=1}^n [F'(c_i)(x_i - x_{i-1})]
จาก F'(c_i) = f(c_i)\, และ xixi − 1 สามารถเขียนในรูป Δx ของผลแบ่งกั้น i
F(b) - F(a) = \sum_{i=1}^n [f(c_i)(\Delta x_i)] \qquad (2)
สังเกตว่าเรากำลังอธิบายพื้นที่ของสี่เหลี่ยมผืนผ้า โดยมีความกว้างคูณความสูง และเราก็บวกพื้นที่เหล่านั้นเข้าด้วยกัน จากทฤษฎีบทค่าเฉลี่ย สี่เหลี่ยมผืนผ้าแต่ละรูปอธิบายค่าประมาณของส่วนของเส้นโค้ง สังเกตอีกว่า Δxi ไม่จำเป็นต้องเหมือนกันในทุกๆค่าของ i หรือหมายความว่าความกว้างของสี่เหลี่ยมนั้นไม่จำเป็นต้องเท่ากัน สิ่งที่เราต้องทำคือประมาณเส้นโค้งด้วยจำนวนสี่เหลี่ยม n รูป เมื่อขนาดของส่วนต่างๆเล็กลง และ n มีค่ามากขึ้น ทำให้เกิดส่วนต่างๆมากขึ้น เพื่อครอบคลุมพื้นที่ เราจะยิ่งเข้าใกล้พื้นที่จริงๆของเส้นโค้ง
โดยการหาลิมิตของนิพจน์นี้เป็นเมื่อค่าเฉลี่ยของส่วนต่างๆนี้ เข้าใกล้ศูนย์ เราจะได้ ปริพันธ์แบบรีมันน์ นั่นคือ เราหาลิมิตเมื่อขนาดส่วนที่ใหญ่ที่สุดเข้าใกล้ศูนย์ จะได้ส่วนอื่นๆมีขนาดเล็กลง และจำนวนส่วนเข้าใกล้อนันต์
ดังนั้น เราจะใส่ลิมิตไปทั้งสองข้างของสมการ (2) จะได้
\lim_{\| \Delta \| \to 0} F(b) - F(a) = \lim_{\| \Delta \| \to 0} \sum_{i=1}^n [f(c_i)(\Delta x_i)]\,dx
ทั้ง F(b) และ F(a) ต่างก็ไม่ขึ้นกับ ||Δ|| ดังนั้น ลิมิตของข้างซ้ายจึงเท่ากับ F(b) - F(a)
F(b) - F(a) = \lim_{\| \Delta \| \to 0} \sum_{i=1}^n [f(c_i)(\Delta x_i)]
และนิพจน์ทางขวาของสมการ หมายถึงอินทิกรัลของ f จาก a ไป b ดังนั้น เราจะได้
F(b) - F(a) = \int_{a}^{b} f(x)\,dx
จบการพิสูจน์

[แก้] ตัวอย่าง

ตัวอย่างเช่น ถ้าคุณต้องการคำนวณหา
\int_2^5 x^2\;\mathrm{d}x
ให้ f(x) = x2 เราจะได้ F(x)=\frac{x^3}{3} เป็นปฏิยานุพันธ์ ดังนั้น
\int_2^5 x^2\;\mathrm{d}x = F(5) - F(2) = {125 \over 3} - {8 \over 3} = {117 \over 3} = 39
ถ้าเราต้องการหา
จะได้ \int_1^3 \frac{dx}{x}=\big[\ln|x|\big]_1^3 =\ln 3-\ln1=\ln 3

[แก้] นัยทั่วไป

เราไม่จำเป็นต้องให้ f ต่อเนื่องตลอดทั้งช่วง ดังนั้นส่วนที่ 1 ของทฤษฎีบทจะกล่าวว่า ถ้า f เป็นฟังก์ชันที่สามารถหาปริพันธ์เลอเบกบนช่วง [a,b] และ x0 เป็นจำนวนในช่วง [a,b] ซึ่ง f ต่อเนื่องที่ x0 จะได้
F(x) = \int_a^x f(t)\;\mathrm{d}t
สามารถหาอนุพันธ์ได้สำหรับ x = x0 และ F(x0) = f(x0) เราสามารถคลายเงื่อนไขของ f เพียงแค่ให้สามารถหาปริพันธ์ได้ในตำแหน่งนั้น ในกรณีนั้น เราสามารถสรุปได้ว่าฟังก์ชัน F นั่นสามารถหาอนุพันธ์ได้เกือบทุกที่ และ F'(x) = f(x) จะเกือบทุกที่ บางทีเราเรียกทฤษฎีนี้ว่า ทฤษฎีบทอนุพันธ์ของเลอเบก
ส่วนที่ 2ของทฤษฎีบทนี้เป็นจริงสำหรับทุกฟังก์ชัน f ที่สามารถหาปริพันธ์เลอเบกได้ และมีปฏิยานุพันธ์ F (ไม่ใช่ทุกฟังก์ชันที่หาอนุพันธ์ได้)
ส่วนของทฤษฎีบทของเทย์เลอร์ซึ่งกล่าวถึงพจน์ที่เกิดข้อผิดพลาดเป็นปริพันธ์สามารถมองได้เป็นนัยทั่วไปของทฤษฎีบทมูลฐานของแคลคูลัส
มีทฤษฎีบทหนึ่งสำหรับฟังก์ชันเชิงซ้อน: ให้ U เป็นเซตเปิดใน \mathbb{C} และ f:U\to\mathbb{C} เป็นฟังก์ชันที่มี ปริพันธ์โฮโลมอร์ฟ F ใน U ดังนั้นสำหรับเส้นโค้ง \gamma : [a,b] \to U ปริพันธ์เส้นโค้งจะคำนวณได้จาก
\oint_{\gamma} f(z) \;\mathrm{d}z = F(\gamma(b)) - F(\gamma(a))
ทฤษฎีบทมูลฐานของแคลคูลัสสามารถวางนัยทั่วไปให้กับ ปริพันธ์เส้นโค้งและพื้นผิวในมิติที่สูงกว่าและบนแมนิโฟลด์ได้

ใน คณิตศาสตร์ ฟังก์ชัน คือ ความสัมพันธ์ จาก เซต หนึ่ง (โดเมน) ไปยังอีกเซตหนึ่ง (โคโดเมน ไม่ใช่ เรนจ์) โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน ความคิดรวบยอดของฟังก์ชันนี้เป็นพื้นฐานของทุกสาขาของคณิตศาสตร์และวิทยาศาสตร์เชิงปริมาณ

แนวคิด

แนวคิดที่สำคัญที่สุดคือ ฟังก์ชันนั้นเป็น "กฎ" ที่กำหนด ผลลัพธ์โดยขึ้นกับสิ่งที่นำเข้ามา ต่อไปนี้เป็นตัวอย่าง
  • แต่ละคนจะมีสีที่ตนชอบ (แดง, ส้ม, เหลือง, เขียว, ฟ้า, น้ำเงิน, คราม หรือม่วง) สีที่ชอบเป็นฟังก์ชันของแต่ละคน เช่น จอห์นชอบสีแดง แต่คิมชอบสีม่วง ในที่นี้สิ่งที่นำเข้าคือคน และผลลัพธ์คือ 1 ใน 8 สีดังกล่าว
  • มีเด็กบางคนขายน้ำมะนาวในช่วงฤดูร้อน จำนวนน้ำมะนาวที่ขายได้เป็นฟังก์ชันของอุณหภูมิภายนอก ตัวอย่างเช่น ถ้าภายนอกมีอุณหภูมิ 85 องศา จะขายได้ 10 แก้ว แต่ถ้าอุณหภูมิ 95 องศา จะขายได้ 25 แก้ว ในที่นี้ สิ่งที่นำเข้าคืออุณหภูมิ และผลลัพธ์คือจำนวนน้ำมะนาวที่ขายได้
  • ก้อนหินก้อนหนึ่งปล่อยลงมาจากชั้นต่างๆของตึกสูง ถ้าปล่อยจากชั้นที่สอง จะใช้เวลา 2 วินาที และถ้าปล่อยจากชั้นที่แปด จะใช้เวลา (เพียง) 4 วินาที ในที่นี้ สิ่งนำเข้าคือชั้น และผลลัพธ์คือระยะเวลาเป็นวินาที ฟังก์ชันนี้อธิบายความสัมพันธ์ระหว่าง เวลาที่ก้อนหินใช้ตกถึงพื้นกับชั้นที่มันถูกปล่อยลงมา (ดู ความเร่ง)
"กฎ" ที่นิยามฟังก์ชันอาจเป็น สูตร, ความสัมพันธ์ (คณิตศาสตร์) หรือเป็นแค่ตารางที่ลำดับผลลัพธ์กับสิ่งที่นำเข้า ลักษณะเฉพาะที่สำคัญของฟังก์ชันคือมันจะมีผลลัพธ์เหมือนเดิมตลอดเมื่อให้ สิ่งนำเข้าเหมือนเดิม ลักษณะนี้ทำให้เราเปรียบเทียบฟังก์ชันกับ "เครื่องกล" หรือ "กล่องดำ" ที่จะเปลี่ยนสิ่งนำเข้าไปเป็นผลลัพธ์ที่ตายตัว เรามักจะเรียกสิ่งนำเข้าว่า อาร์กิวเมนต์ (argument) และเรียกผลลัพธ์ว่า ค่า (value) ของฟังก์ชัน
ชนิดของฟังก์ชันธรรมดาเกิดจากที่ทั้งอาร์กิวเมนต์และค่าของฟังก์ชันเป็น ตัวเลขทั้งคู่ ความสัมพันธ์ของฟังก์ชันมักจะเขียนในรูปสูตร และจะได้ค่าของฟังก์ชันมาทันทีเพียงแทนที่อาร์กิวเมนต์ลงในสูตร เช่น
f(x) = x2
ซึ่งจะได้ค่ากำลังสองของ x ใดๆ
โดยนัยทั่วไปแล้ว ฟังก์ชันจะสามารถมีได้มากกว่าหนึ่งอาร์กิวเมนต์ เช่น
g(x,y) = xy
เป็นฟังก์ชันที่นำตัวเลข x และ y มาหาผลคูณ ดูเหมือนว่านี่ไม่ใช่ฟังก์ชันจริงๆดังที่เราได้อธิบายข้างต้น เพราะว่า "กฎ" ขึ้นอยู่กับสิ่งนำเข้า 2 สิ่ง อย่างไรก็ตาม ถ้าเราคิดว่าสิ่งนำเข้า 2 สิ่งนี้เป็น คู่อันดับ (x,y) 1 คู่ เราก็จะสามารถแปลได้ว่า g เป็นฟังก์ชัน โดยที่อาร์กิวเมนต์คือคู่อันดับ (x,y) และค่าของฟังก์ชันคือ xy
ในวิทยาศาสตร์ เรามักจะต้องเผชิญหน้ากับฟังก์ชันที่ไม่ได้กำหนดขึ้นจากสูตร เช่นอุณหภูมิบนพื้นผิวโลกในเวลาใดเวลาหนึ่ง นี่เป็นฟังก์ชันที่มีสถานที่และเวลาเป็นอาร์กิวเมนต์ และให้ผลลัพธ์เป็นอุณหภูมิของสถานที่และเวลานั้นๆ
เราได้เห็นแล้วว่าแนวคิดของฟังก์ชันไม่ได้จำกัดอยู่แค่การคำนวณด้วยตัว เลขเท่านั้น และไม่ได้จำกัดอยู่แค่การคำนวณด้วย แนวคิดของคณิตศาสตร์เกี่ยวกับฟังก์ชัน เป็นแนวคิดโดยทั่วไปและไม่ได้จำกัดอยู่แค่สถานการณ์ที่เกี่ยวข้องกับตัวเลข เท่านั้น แน่นอนว่าฟังก์ชันเชื่อมโยง "โดเมน" (เซตของสิ่งนำเข้า) เข้ากับ "โคโดเมน" (เซตของผลลัพธ์ที่เป็นไปได้) ดังนั้นสมาชิกแต่ละตัวของโดเมนจะจับคู่กับสมาชิกตัวใดตัวหนึ่งของโคโดเมน เท่านั้น ฟังก์ชันนั้นนิยามเป็นความสัมพันธ์ที่แน่นอน ดังที่จะกล่าวต่อไป เป็นเหตุจากลักษณะทั่วไปนี้ แนวคิดรวบยอดของฟังก์ชันจึงเป็นพื้นฐานของทุกสาขาในคณิตศาสตร์

[แก้] ประวัติ

ในทางคณิตศาสตร์ "ฟังก์ชัน" บัญญัติขึ้นโดย ไลบ์นิซ ใน พ.ศ. 2237 เพื่ออธิบายปริมาณที่เกี่ยวข้องกับเส้นโค้ง เช่น ความชันของเส้นโค้ง หรือจุดบน เส้นโค้ง ฟังก์ชันที่ไลบ์นิซพิจารณานั้นในปัจจุบันเรียกว่า ฟังก์ชันที่หาอนุพันธ์ได้ และเป็นชนิดของฟังก์ชันที่มักจะแก้ด้วยผู้ที่ไม่ใช่นักคณิตศาสตร์ สำหรับฟังก์ชันชนิดนี้ เราสามารถพูดถึงลิมิตและอนุพันธ์ ซึ่งเป็นการทฤษฎีเซต พวกเขาได้พยายามนิยามวัตถุทางคณิตศาสตร์ทั้งหมดด้วย เซต ดีริคเลท และ โลบาเชฟสกี ได้ให้นิยามสมัยใหม่ของฟังก์ชันออกมาเกือบพร้อมๆกัน
ในคำนิยามนี้ ฟังก์ชันเป็นเพียงกรณีพิเศษของความสัมพันธ์ อย่างไรก็ตาม เป็นกรณีที่มีความน่าสนใจเป็นพิเศษ ความแตกต่างระหว่างคำนิยามสมัยใหม่กับคำนิยามของออยเลอร์นั้นเล็กน้อยมาก
แนวคิดของ ฟังก์ชัน ที่เป็นกฎในการคำนวณ แทนที่เป็นความสัมพันธ์ชนิดพิเศษนั้น อยู่ในคณิตตรรกศาสตร์ และวิทยาการคอมพิวเตอร์เชิงทฤษฎี ด้วยหลายระบบ รวมไปถึง แคลคูลัสแลมบ์ดา ทฤษฎีฟังก์ชันเวียนเกิด และเครื่องจักรทัวริง

[แก้] นิยามอย่างเป็นทางการ

ฟังก์ชัน f จากข้อมูลนำเข้าในเซต X ไปยังผลที่เป็นไปได้ในเซต Y (เขียนเป็น f:X\rightarrow Y) คือความสัมพันธ์ ระหว่าง X กับ Y ซึ่ง
  1. สำหรับทุกค่า x ใน X จะมี y ใน Y ซึ่ง x f y (x มีความสัมพันธ์ f กับ y) นั่นคือ สำหรับค่านำเข้าแต่ละค่า จะมีผลลัพธ์ใน Y อย่างน้อย 1 ผลลัพธ์เสมอ
  2. ถ้า x f y และ x f z แล้ว y = z นั่นคือ ค่านำเข้าหลายค่าสามารถมีผลลัพธ์ได้ค่าเดียว แต่ค่านำเข้าค่าเดียวไม่สามารถมีผลลัพธ์หลายผลลัพธ์ได้
ค่านำเข้า x แต่ละค่า จากโดเมน จะมีผลลัพธ์ y จากโคโดเมนเพียงค่าเดียว แทนด้วย f (x)
จากนิยามข้างต้น เราสามารถเขียนอย่างสั้นๆได้ว่า ฟังก์ชันจาก X ไปยัง Y คือเซตย่อย f ของผลคูณคาร์ทีเซียน X \times Y โดยที่แต่ละค่าของ x ใน X จะมี y ใน Y ที่แตกต่างกัน โดยที่คู่อันดับ (x, y) อยู่ใน f
เซตของฟังก์ชัน f:X\rightarrow Y ทุกฟังก์ชันแทนด้วย YX สังเกตว่า |YX| = |Y||X| (อ้างถึง จำนวนเชิงการนับ)
ความสัมพันธ์ระหว่าง X กับ Y ซึ่งเป็นไปตามเงื่อนไข (1) นั่นคือฟังก์ชันหลายค่า ฟังก์ชันทุกฟังก์ชันเป็นฟังก์ชันหลายค่า แต่ฟังก์ชันหลายค่าไม่ทุกฟังก์ชันเป็นฟังก์ชัน ความสัมพันธ์ระหว่าง X กับ Y ซึ่งเป็นไปตามเงื่อนไข (2) นั่นคือฟังก์ชันบางส่วน ฟังก์ชันทุกฟังก์ชันเป็นฟังก์ชันบางส่วน แต่ฟังก์ชันบางส่วนไม่ทุกฟังก์ชันเป็นฟังก์ชัน "ฟังก์ชัน" คือความสัมพันธ์ที่เป็นไปตามเงื่อนไขทั้งสองเงื่อนไข
ดูตัวอย่างต่อไปนี้
Multivalued function.svg สมาชิก 3 ใน X สัมพันธ์กับ b และ c ใน Y ความสัมพันธ์นี้เป็นฟังก์ชันหลายค่า แต่ไม่เป็นฟังก์ชัน
Partial function.svg สมาชิก 1 ใน X ไม่สัมพันธ์กับสมาชิกใดๆเลยใน Y ความสัมพันธ์นี้เป็นฟังก์ชันบางส่วน แต่ไม่เป็นฟังก์ชัน
Total function.svg ความสัมพันธ์นี้เป็นฟังก์ชันจาก X ไปยัง Y เราสามารถหานิยามฟังก์ชันนี้อย่างชัดแจ้งได้เป็น f={ (1,d) , (2,d) , (3,c) } หรือเป็น
f (x) =\left\{\begin{matrix} d, & \mbox{if }x=1 \\ d, & \mbox{if }x=2 \\ c, & \mbox{if }x=3. \end{matrix}\right.

[แก้] โดเมน, โคโดเมน และเรนจ์

X ซึ่งคือเซตข้อมูลนำเข้าเรียกว่า โดเมนของ f และ Y ซึ่งคือเซตของผลลัพธ์ที่เป็นไปได้ เรียกว่า โคโดเมน เรนจ์ของ f คือเซตของผลลัพธ์จริงๆ {f (x) : x ในโดเมน} ระวังว่าบางครั้งโคโดเมนจะถูกเรียกว่าเรนจ์ เนื่องจากความผิดพลาดจากการจำแนกระหว่างผลที่เป็นไปได้กับผลจริงๆ
ฟังก์ชันนั้นเรียกชื่อตามเรนจ์ของมัน เช่น ฟังก์ชันจำนวนจริง หรือ ฟังก์ชันจำนวนเชิงซ้อน
เอนโดฟังก์ชัน คือฟังก์ชันที่โดเมนและเรนจ์เป็นเซตเดียวกัน
ในสาขาวิทยาการคอมพิวเตอร์ แบบชนิดข้อมูลของอาร์กิวเมนต์และค่าที่คืนกลับมาระบุโดเมนและโคโดเมน (ตามลำดับ) ของโปรแกรมย่อย ดังนั้นโดเมนและโคโดเมนจะถูกกำหนดไว้ในแต่ละฟังก์ชัน แต่เรนจ์จะเกี่ยวกับว่าค่าที่คืนกลับมาจะเป็นอย่างไร

[แก้] ฟังก์ชันหนึ่งต่อหนึ่ง ฟังก์ชันทั่วถึง และฟังก์ชันหนึ่งต่อหนึ่งทั่วถึง

เราสามารถแบ่งฟังก์ชันตามลักษณะความสัมพันธ์ได้ดังนี้
  • ฟังก์ชันหนึ่งต่อหนึ่ง (1-1) ฟังก์ชันจะคืนค่าที่ไม่เหมือนกันหากนำเข้าค่าคนละค่ากัน กล่าวคือ ถ้า x1 และ x2 เป็นสมาชิกของโดเมนของ f แล้ว f (x1) = f (x2) ก็ต่อเมื่อ x1 = x2
  • ฟังก์ชันทั่วถึง (แบบ onto) ฟังก์ชันจะมีเรนจ์เท่ากับโคโดเมน กล่าวคือ ถ้า y เป็นสมาชิกใดๆของโคโดเมนของ f แล้วจะมี x อย่างน้อย 1 ตัว ซึ่ง f (x) = y

[แก้] ภาพ และบุพภาพ

ภาพ (image) ของสมาชิก xX ภายใต้ f คือผลลัพธ์ f (x)
ภาพของเซตย่อย AX ภายใต้ f คือเซตย่อย Y ซึ่งมีนิยามดังนี้
f[A] = {f (x)  | x อยู่ใน A}
บางครั้ง อาจใช้ f (A) แทน f[A]
สังเกตว่าเรนจ์ของ f คือภาพ f (X) ของโดเมนของมัน. ในฟังก์ชันข้างบน ภาพของ {2, 3} ภายใต้ f คือ f ({2, 3}) = {c, d} และเรนจ์ของ f คือ {c, d}
บุพภาพ (preimage) (หรือ ภาพผกผัน) ของเซต BY ภายใต้ f คือเซตย่อยของ X ซึ่งมีนิยามคือ
f −1 (B)  = {x อยู่ใน X | f (x) ∈B}
สำหรับฟังก์ชันข้างบน บุพภาพของ {a, b} คือ f −1 ({a, b}) = {1}

[แก้] กราฟของฟังก์ชัน

กราฟของฟังก์ชัน f คือเซตของคู่อันดับ (x, f (x)) ทั้งหมด สำหรับค่า x ทั้งหมดในโดเมน X มีทฤษฎีบทที่แสดงหรือพิสูจน์ง่ายมากเมื่อใช้กราฟ เช่น ทฤษฎีบทกราฟปิด ถ้า X และ Y เป็นเส้นจำนวนจริง แล้วนิยามนี้จะสอดคล้องกับแนวคิดของกราฟ

กราฟของฟังก์ชันกำลังสาม กราฟนี้เป็นฟังก์ชันทั่วถึงแต่ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง
สังเกตว่าเมื่อความสัมพันธ์ระหว่างสองเซต X และ Y มักจะแสดงด้วยเซตย่อยของ X×Y นิยามอย่างเป็นทางการของฟังก์ชันนั้นระบุฟังก์ชัน f ด้วยกราฟของมัน

[แก้] ตัวอย่างฟังก์ชัน

  • ความสัมพันธ์ wght ระหว่างบุคคลกับน้ำหนักในเวลาใดเวลาหนึ่ง
  • ความสัมพันธ์ cap ระหว่างประเทศกับเมืองหลวงของประเทศนั้น
  • ความสัมพันธ์ sqr ระหว่างจำนวนธรรมชาติ n กับกำลังสอง n2
  • ความสัมพันธ์ ln ระหว่างจำนวนจริงบวก x กับลอการิทึมฐานธรรมชาติ ln (x) แต่ความสัมพันธ์ระหว่างจำนวนจริงกับลอการิทึมฐานธรรมชาตินั้นไม่เป็น ฟังก์ชัน เพราะว่าจำนวนจริงทุกจำนวนไม่ได้มีลอการิทึมฐานธรรมชาติ นั่นคือเป็นความสัมพันธ์ไม่ทั้งหมด
  • ความสัมพันธ์ dist ระหว่างจุดบนระนาบ R2 กับระยะทางจากจุดกำเนิด (0,0)
ชนิดของฟังก์ชันทางคณิตศาสตร์ที่มักใช้กันเช่น การบวก การลบ การคูณ การหาร พหุนาม เลขยกกำลัง ลอการิทึม ราก อัตราส่วน และตรีโกณมิติ ฟังก์ชันเหล่านี้มักเรียกว่า ฟังก์ชันพื้นฐาน แต่คำนี้จะมีความหมายต่างออกไปตามสาขาของคณิตศาสตร์ ตัวอย่างของฟังก์ชันที่ไม่เป็นพื้นฐาน (ฟังก์ชันพิเศษ) เช่น ฟังก์ชันเบสเซิล และฟังก์ชันแกมมา

[แก้] คุณสมบัติของฟังก์ชัน

ฟังก์ชันอาจเป็น

[แก้] ฟังก์ชันแบบ n-ary : ฟังก์ชันหลายตัวแปร

ฟังก์ชันที่เราใช้ส่วนมักจะเป็น ฟังก์ชันหลายตัวแปร ค่าที่ได้จะขึ้นอยู่กับปัจจัยต่างๆกัน จากมุมมองของคณิตศาสตร์ ตัวแปรทั้งหมดต้องแสดงอย่างชัดแจ้งเพื่อที่จะเกิดความสัมพันธ์แบบฟังก์ชัน - ไม่มีปัจจัย "ซ่อนเร้น" อยู่ และเช่นกัน จากมุมมองของคณิตศาสตร์ ไม่มีความแตกต่างเชิงคุณภาพระหว่างฟังก์ชันตัวแปรเดียวกับฟังก์ชันหลายตัว แปร ฟังก์ชันสามตัวแปรจำนวนจริงนั้นก็คือฟังก์ชันของ triple ((x,y,z)) ของจำนวนจริง
ถ้าโดเมนของฟังก์ชันหนึ่งเป็นเซตย่อยของ ผลคูณคาร์ทีเซียน ของ n เซต แล้ว เราเรียกฟังก์ชันนี้ว่า ฟังก์ชัน n-ary ตัวอย่างเช่นฟังก์ชัน dist มีโดเมน \mathbb{R}\times\mathbb{R} จึงเป็นฟังก์ชันทวิภาค ในกรณีนี้ dist ((x,y)) เขียนอย่างง่ายเป็น dist (x,y)
การดำเนินการ ก็เป็นฟังก์ชันหลายตัวแปรชนิดหนึ่ง ในพีชคณิตนามธรรม ตัวดำเนินการเช่น "*" นั้นนิยามจากฟังก์ชันทวิภาค เมื่อเราเขียนสูตรเช่น x*y ในสาขานี้ เสมือนกับว่าเราเรียกใช้ฟังก์ชัน * (x,y) โดยปริยาย เพียงแต่เขียนในรูปสัญกรณ์เติมกลาง (infix notation) ซึ่งสะดวกกว่า
ตัวอย่างที่สำคัญทางทฤษฎีตัวอย่างหนึ่งคือ กำหนดการเชิงฟังก์ชัน ซึ่งใช้แนวคิดของฟังก์ชันเป็นศูนย์กลาง ด้วยวิธีนี้ การจัดการฟังก์ชันหลายตัวแปรทำได้เหมือนเป็นการดำเนินการ ซึ่งแคลคูลัสแลมบ์ดา มีวากยสัมพันธ์ (syntax) ให้เรา

[แก้] การประกอบฟังก์ชัน

ฟังก์ชัน f: Xye → Y และ g:YZ สามารถประกอบกันได้ ซึ่งจะได้ผลเป็นฟังก์ชันประกอบ g o f: XZ ซึ่งมีนิยามคือ (g o f) (x) = g (f (x)) สำหรับทุกค่าของ x ใน X ตัวอย่างเช่น สมมติว่าความสูงของเครื่องบินที่เวลา t เป็นไปตามฟังก์ชัน h (t) และความเข้มข้นของออกซิเจนในอากาศที่ความสูง x เป็นไปตามฟังก์ชัน c (x) ดังนี้น (c o h) (t) จะบอกความเข้มข้นของออกซิเจนในอากาศรอบๆเครื่องบินที่เวลา t

[แก้] ฟังก์ชันผกผัน

ถ้าฟังก์ชัน f: XY เป็นฟังก์ชันหนึ่งต่อหนึ่งต่อเนื่อง แล้ว พรีอิเมจของสมาชิก y ใดๆในโคโดเมน Y จะเป็นเซตโทน ฟังก์ชันจาก yY ไปยังพรีอิเมจ f −1 (y) ของมัน คือฟังก์ชันที่เรียกว่า ฟังก์ชันผกผัน ของ f เขียนแทนด้วย f −1
ตัวอย่างหนึ่งของฟังก์ชันผกผันสำหรับ f (x) = 2x คือ f −1 (x) = x/2 ฟังก์ชันผกผันคือฟังก์ชันที่ย้อนการกระทำของฟังก์ชันต้นแบบของมัน ดู อิเมจผกผัน
บางครั้งฟังก์ชันผกผันก็หายากหรือไม่มี พิจารณา f(x) = x2 ฟังก์ชัน f (x) =\sqrt{x} ไม่ใช่ฟังก์ชันผกผันเมื่อโดเมนของ f คือ \mathbb{R}

ในวิชาคณิตศาสตร์ ลิมิตของฟังก์ชัน เป็นแนวคิดพื้นฐานของ คณิตวิเคราะห์ (ภาคทฤษฎีของแคลคูลัส)
ถ้าเราพูดว่า ฟังก์ชัน f มีลิมิต L ที่จุด p หมายความว่า ผลลัพธ์ของ f จะเข้าใกล้ L ที่จุดใกล้จุด p สำหรับนิยามอย่างเป็นทางการนั้น มีการกำหนดขึ้นครั้งแรก ช่วงปลายของคริสต์ศตวรรษที่ 19 มีรายละเอียดอยู่ข้างล่าง

ประวัติ

ดูที่ คณิตวิเคราะห์

[แก้] นิยามเป็นทางการ

[แก้] ฟังก์ชันบนปริภูมิอิงระยะทาง

กำหนดให้ f : (M,dM) -> (N,dN) เป็นการส่งค่าระหว่าง (เป็นฟังก์ชันที่นิยามบน) ปริภูมิอิงระยะทาง สองปริภูมิ, และกำหนดให้ pM และ LN, เราจะกล่าวว่า "ลิมิตของ f ที่ p คือ L" และเขียนว่า
 \lim_{x \to p}f(x) = L
ก็ต่อเมื่อ สำหรับทุกค่าของ ε > 0
จะมี
δ > 0 ที่ สำหรับทุกๆ xM และ dM(x, p) < δ แล้ว, dN(f(x), L) < ε

[แก้] ฟังก์ชันค่าจริง

เซตของจำนวนจริงหรือเส้นจำนวนจริง โดยทั่วไปสามารถมองเป็นปริภูมิอิงระยะทางได้ โดยมี d(x,y): = | xy | . เช่นเดียวกับ เส้นจำนวนจริงขยาย (เส้นจำนวนจริงที่เพิ่ม +∞ และ -∞ เข้าไปด้วย) ก็สามารถมองเป็นปริภูมิอิงระยะทางได้ โดยมี d(x,y): = | arctan(x) − arctan(y) |

[แก้] ลิมิตของฟังก์ชันค่าจริงที่จุดใดจุดหนึ่ง

ให้ f เป็นฟังก์ชันค่าจริง แล้วเราจะเขียน
 \lim_{x \to p}f(x) = L  ก็ต่อเมื่อ
สำหรับทุกค่าของ ε > 0 (ไม่ว่าจะเล็กเท่าใด) จะต้องมี δ > 0 อย่างน้อยหนึ่งค่า ที่ สำหรับทุกค่าของจำนวนจริง x ที่  0 < |x-p| < δ,  |f(x)-L| < ε
ซึ่งเป็นกรณีพิเศษของฟังก์ชันบนปริภูมิอิงระยะทาง ที่มีทั้ง M และ N เป็นเซตของจำนวนจริง และ d(x,y) = |x-y|.
หรือเราจะเขียน
 \lim_{x \to p}f(x) = \infty ก็ต่อเมื่อ
สำหรับทุกค่าของ R > 0 (ไม่ว่าจะใหญ่เท่าใด) จะต้องมี δ > 0 อย่างน้อยหนึ่งค่า ที่ สำหรับทุกค่าของจำนวนจริง x ที่  0 < |x-p| < δ, f(x) > R;
หรือจะเขียนว่า
 \lim_{x \to p}f(x) = -\infty ก็ต่อเมื่อ
สำหรับทุกค่าของ R < 0 จะต้องมี δ > 0 อย่างน้อยหนึ่งค่า ที่ สำหรับทุกค่าของจำนวนจริง x ที่ 0 < |x-p| < δ, f(x) < R.
ถ้าในนิยาม เราใช้ x-p แทน |x-p| เราก็จะได้ ลิมิตขวา เขียนแทนโดย : \lim_{x \to p^+} และถ้าใช้ p-x แทน ก็จะได้ ลิมิตซ้าย เขียนแทนโดย : \lim_{x \to p^-}

[แก้] ลิมิตของฟังก์ชันค่าจริง ณ อนันต์


จะมีลิมิตของฟังก์ชัน ณ อนันต์ ถ้า สำหรับ ε > 0 ใดๆ มี S > 0 อย่างน้อยหนึ่งค่า ที่ทำให้ |f(x)-L| < ε สำหรับ x > S ใดๆ
ให้ f(x) เป็นฟังก์ชันค่าจริง เราจะพิจารณาลิมิตของฟังก์ชันเมื่อ x เพิ่มขึ้น หรือลดลงอย่างไม่มีที่สิ้นสุด
เราจะเขียน
 \lim_{x \to \infty}f(x) = L

[แก้] ฟังก์ชันค่าเชิงซ้อน

ระนาบเชิงซ้อน ที่มีตัววัด (metric) เป็น d(x,y): = | xy | จะเป็นปริภูมิอิงระยะทาง (metric space) ด้วยเช่นกัน จะมีลิมิตสองประเภทเมื่อเราพูดถึงฟังก์ชันค่าเชิงซ้อน

[แก้] ลิมิตของฟังก์ชันที่จุดใดจุดหนึ่ง

สมมติให้ f เป็นฟังก์ชันค่าเชิงซ้อน แล้วเราจะเขียนว่า
 \lim_{x \to p}f(x) = L
ได้ ก็ต่อเมื่อ
สำหรับ ε > 0 ใดๆ จะมี δ >0 อย่างน้อย 1 ค่า ซึ่งสำหรับจำนวนจริง x ใดๆ ซึ่ง 0<|x-p|<δ จะได้ |f(x)-L|<ε
นี่เป็นกรณีพิเศษของฟังก์ชันบนปริภูมิอิงระยะทางที่มีทั้ง M และ N เป็นระนาบเชิงซ้อน

[แก้] ลิมิตของฟังก์ชัน ณ อนันต์

เราจะเขียน
 \lim_{x \to \infty}f(x) = L
ได้ ก็ต่อเมื่อ
สำหรับ ε > 0 ใดๆ จะมี S >0 ซึ่งสำหรับจำนวนเชิงซ้อน |x|>S ใดๆ เราจะได้ |f(x)-L|<ε

[แก้] ตัวอย่าง

[แก้] ฟังก์ชันค่าจริง

\lim_{x \to 3}x^2=9 ลิมิตของ x2 เมื่อ x เข้าใกล้ 3 คือ 9 ในกรณีนี้ ฟังก์ชันนั้นต่อเนื่อง และค่าของมันมีนิยามที่จุดนั้น ค่าลิมิตจึงเท่ากับการแทนค่าฟังก์ชัน
\lim_{x \to 0^+}x^x=1 ลิมิตของ xx เมื่อ x เข้าใกล้ 0 จากทางขวาคือ 1
\lim_{x \to 0}{1 \over x} = \mbox{Undefined}
\lim_{x \to 0^+}{1 \over x} = +\infty
ลิมิตสองด้านของ 1/x เมื่อ x เข้าใกล้ 0 นั้นไม่มีนิยาม
ลิมิตของ 1/x เมื่อ x เข้าใกล้ 0 จากทางขวาคือ +∞
\lim_{x \to 0^+}{|x| \over x}=1
\lim_{x \to 0^-}{|x| \over x}=-1
ลิมิตด้านเดียวของ |x|/x เมื่อ x เข้าใกล้ 0 คือ 1 จากด้านบวกและคือ -1 จากด้านลบ สังเกตว่า |x|/x = -1 เมื่อ x เป็นลบ และ |x|/x = 1 เมื่อ x เป็นบวก
\lim_{x \to 0}x \sin {1 \over x} = 0 ลิมิตของ x sin(1/x) เมื่อ x เข้าใกล้ 0 คือ 0
\lim_{|x| \to \infty}x^{-a} = 0 \mbox{ if } a \in \mathbb{R}; a>0; x \in \mathbb{C} ฟังก์ชันยกกำลังที่มีเลขชี้กำลังเป็นลบใดๆ เข้าใกล้ 0 เมื่อขนาดของ x เพิ่มขึ้นเรื่อยๆ อย่างไม่มีขอบเขตจำกัด
\lim_{x \to \infty}{x^a \over b^x} = 0 \mbox{ if } a,b \in \mathbb{R}; b>0 ฟังก์ชันยกกำลังใดๆ จะมีขนาดลดลงเป็นศูนย์ เทียบกับฟังก์ชันเลขชี้กำลังเพิ่มใดๆ เมื่อ x เพิ่มขึ้นเรื่อยๆ อย่างไม่มีขอบเขตจำกัด
\lim_{x \to \infty}{\log_b x \over x^a} = 0 \mbox{ if } a,b \in \mathbb{R}; a>0; b>0 ฟังก์ชันลอการิทึมใดๆ จะมีขนาดลดลงเป็นศูนย์ เทียบกับฟังก์ชันยกกำลังที่เป็นบวกใดๆ เมื่อ x เพิ่มขึ้นเรื่อยๆ อย่างไม่มีขอบเขตจำกัด
\lim_{x \to \infty}{a^x \over x!} = 0 \mbox{ if } a \in \mathbb{R} ฟังก์ชันเลขชี้กำลังใดๆ จะมีขนาดลดลงเป็นศูนย์ เทียบกับฟังก์ชันแฟกทอเรียลใดๆ เมื่อ x เพิ่มขึ้นเรื่อยๆ อย่างไม่มีขอบเขตจำกัด

[แก้] ฟังก์ชันบนปริภูมิอิงระยะทาง

  • ถ้า z เป็นจำนวนเชิงซ้อน โดยที่ |z| < 1 แล้วลำดับ z, z2, z3, ... ของจำนวนเชิงซ้อนจะลู่เข้าโดยมีลิมิตเป็น 0 โดยเรขาคณิตแล้ว จำนวนเหล่านี้จะ "เวียนเป็นก้นหอย" เข้าสู่จุดกำเนิด ตามเส้นก้นหอยลอการิทึม
  • ในปริภูมิอิงระยะทาง C[a,b] ของฟังก์ชันต่อเนื่องใดๆ ที่นิยามบนช่วง [a,b] โดยมีระยะทางเพิ่มขึ้นจาก Supremum norm สมาชิกทุกตัวสามารถเขียนในรูปของลิมิตของลำดับของ ฟังก์ชันพหุนาม ได้ นี่คือเนื้อหาของ ทฤษฎีบทสโตน-ไวแยร์สตราสส์ (Stone-Weierstrass theorem)

[แก้] คุณสมบัติ

ประโยค "ลิมิตของฟังก์ชัน f ที่ p คือ L" เหมือนกับประโยค
"สำหรับลำดับลู่เข้า (xn) ใน M ซึ่งมีลิมิตเท่ากับ pลำดับ (f(xn)) ลู่เข้าสู่ลิมิต L"
ในกรณีที่ f เป็นฟังก์ชันค่าจริง จะได้ว่า ประโยคนั้นเหมือนกับ "ทั้งลิมิตซ้ายและลิมิตขวาของ f ที่ p คือ L"
ฟังก์ชัน f ต่อเนื่อง ที่ p ก็ต่อเมื่อ เราสามารถหาค่าของลิมิตของ f(x) เมื่อ x เข้าใกล้ p และค่านั้นเท่ากับ f(p) หรืออีกนัยหนึ่ง ฟังก์ชัน f แปลงลำดับใดๆ ใน M ซึ่งสู่เข้าหา p ไปเป็นลำดับ N ซึ่งลู่เข้าหา f(p)



นทางคณิตศาสตร์ ฟังก์ชันต่อเนื่อง (อังกฤษ: continuous function) คือฟังก์ชันที่ถ้าตัวแปรต้นมีค่าเปลี่ยนแปลงไปเพียงเล็กน้อย ผลลัพธ์ก็ จะมีค่าเปลี่ยนแปลงไปเพียงเล็กน้อยด้วยเช่นกัน เราเรียกฟังก์ชันที่การเปลี่ยนแปลงไปเพียงเล็กน้อยของค่าของตัวแปรต้นทำให้ เกิดการก้าวกระโดดของผลลัพธ์ของฟังก์ชันว่า ฟังก์ชันไม่ต่อเนื่อง (discontinuous function) ตัวอย่างเช่น ให้ฟังก์ชัน h(t) เป็นฟังก์ชันที่ส่งเวลา t ไปยังความสูงของต้นไม้ที่เวลานั้น เราได้ว่าฟังก์ชันนี้เป็นฟังก์ชันต่อเนื่อง อีกตัวอย่างของฟังก์ชันต่อเนื่องคือ ฟังก์ชัน T(x) ที่ส่งความสูง x ไปยังอุณหภูมิ ณ จุดที่มีความสูง x เหนือจุดพิกัดทางภูมิศาสตร์จุดหนึ่ง ในทางกลับกัน ถ้า M(t) เป็นฟังก์ชันที่ส่งเวลา t ไปยังจำนวนเงินที่อยู่ในบัญชีธนาคาร เราได้ว่า M ไม่ใช่ฟังก์ชันต่อเนื่องเนื่องจากผลลัพธ์ของฟังก์ชันมีการเปลี่ยนแปลงแบบก้าวกระโดดเมื่อมีการฝากเงินหรือถอนเงินเข้าหรือออกจากบัญชี
ในคณิตศาสตร์แขนงต่างๆ นั้นแนวคิดของความต่อเนื่องถูกดัดแปลงให้มีความเหมาะสมกับคณิตศาสตร์แขนง นั้นๆ การดัดแปลงที่พบได้บ่อยที่สุดมีอยู่ในวิชาทอพอโลยี ซึ่งท่านสามารถหาข้อมูลเพิ่งเติมได้ในบทความเรื่อง ความต่อเนื่อง (ทอพอโลยี) อนึ่ง ในทฤษฎีลำดับโดยเฉพาะในทฤษฏีโดเมน นิยามของความต่อเนื่องที่ใช้คือความต่อเนื่องของสก็อตซึ่งเป็นนิยามที่สร้างขึ้นจากความต่อเนื่องที่ถูกอธิบายในบทความนี้อีกทีหนึ่ง



ฟังก์ชันค่าจริงต่อเนื่อง

สมมติว่า f เป็นฟังก์ชันที่ส่งช่วงช่วงหนึ่งของจำนวนจริงไปยังจำนวนจริง ดังเช่นฟังก์ชัน h, T, และ M ข้างต้น ฟังก์ชันเหล่านี้สามารถเขียนแทนด้วยกราฟของฟังก์ชันบนระนาบคาร์ทีเซียน เราอาจกล่าวโดยหยาบๆ ว่าฟังก์ชัน f เป็นฟังก์ชันต่อเนื่องถ้ากราฟของฟังก์ชันเป็นเส้นที่ไม่มีจุดแหว่งหรือการ ก้าวกระโดด กล่าวคือ เราสามารถเขียนกราฟได้โดยไม่ต้องยกปากกา
ถ้าจะกล่าวให้รัดกุมตามหลักคณิตศาสตร์แล้ว เรากล่าวว่าฟังก์ชัน f ต่อเนื่องที่จุด c ถ้าเงื่อนไขทั้งสองข้อต่อไปนี้เป็นจริง
  • ฟังก์ชัน f มีนิยามที่จุด c
  • ให้ c เป็นจุดลิมิตของโดเมนของ f แล้ว ลิมิตของ f(x) เมื่อ x เข้าใกล้ c มีค่าเท่ากับ f(c)
เรากล่าวว่าฟังก์ชัน f ฟังก์ชันต่อเนื่องทุกที่ หรือเรียกย่อๆ ว่า ฟังก์ชันต่อเนื่อง ถ้า f ต่อเนื่องที่ทุกจุดในโดเมนของมัน

[แก้] นิยามเอปไซลอน-เดลตา

[แก้] ตัวอย่าง

[แก้] ฟังก์ชันต่อเนื่องระหว่างปริภูมิอิงระยะทาง

[แก้] ฟังก์ชันต่อเนื่องระหว่างปริภูมิเชิงทอพอโลยี

นิยามของฟังก์ชันต่อเนื่องสามารถขยายให้กว้างขึ้น เพื่อให้ครอบคลุมฟังก์ชันระหว่างปริภูมิทอพอโลยี X,Y ได้ดังนี้:
 f: X \to Y \mbox{ is continuous iff } \forall V \subseteq Y \mbox{ s.t. } V \mbox{ is an open set}, f^{-1} (V) \mbox{ is open in } X .
อนึ่ง สามารถพิสูจน์ได้ว่าในปริภูมิยุคลิด นิยามข้างต้นและนิยามเอปไซลอน-เดลตาเหมือนกันทุกประการ. จากนิยามนี้ทำให้นักคณิตศาสตร์ทราบแก่นที่แท้จริงของความต่อเนื่องคือ การนิยามเซตเปิดในระบบนั่นเอง ไม่ใช่ฟังก์ชันระยะทางดังที่เคยเข้าใจมา



ใน คณิตศาสตร์ พหุนามอาจเป็นฟังก์ชันที่ง่ายที่สุดในการทำแคลคูลัส อนุพันธ์ และปริพันธ์เป็นไปตามกฎต่อไปนี้
\frac{\mathrm{d}}{\mathrm{d}x} \sum^n_{k=0} a_k x^k = \sum^n_{k=0} ka_kx^{k-1}
\int \sum^n_{k=0} a_k x^k\;\mathrm{d}x= \sum^n_{k=0} \frac{a_k x^{k+1}}{k+1}  + c.

บทพิสูจน์

เนื่องจากการหาอนุพันธ์เป็น การแปลงเชิงเส้น จะได้
\frac{\mathrm{d}}{\mathrm{d}x}\left( \sum_{r=0}^n a_r x^r \right) =
\sum_{r=0}^n \frac{\mathrm{d}\left(a_r x^r\right)}{\mathrm{d}x} =
\sum_{r=0}^n a_r \frac{\mathrm{d}\left(x^r\right)}{\mathrm{d}x}.
ดังนั้นจะต้องหา \frac{\mathrm{d}\left(x^r\right)}{\mathrm{d}x} สำหรับ จำนวนธรรมชาติ r ใดๆ ซึ่งมีการพิสูจน์โดยอุปนัย โดยใช้ กฎผลคูณ ซึ่งขึ้นอยู่กับกรณีที่ r = 1 เท่านั้น

[แก้] นัยทั่วไป

\frac{\mathrm{d}}{\mathrm{d}x} \left(ax^k\right) = akx^{k-1}
เป็นจริงทุกค่า k ที่ xk มีความหมาย หรือ ทุกค่า k ที่เป็นจำนวนตรรกยะที่ xk มีการนิยามไว้
นัยทั่วไปนี้ก็เป็นจริงสำหรับการหาปริพันธ์ของพนุนามเช่นเดียวกัน
ถ้ามีพนุนามที่ตัวคูณไม่ใช่จำนวนจริงหรือจำนวนเชิงซ้อน (เช่นอาจเป็น จำนวนเต็ม หรือตัวเลขมอดุโลของจำนวนเฉพาะ) ก็สามารถนิยามอนุพันธ์จากความสัมพันธ์ข้างบน



ทฤษฎีบทค่าเฉลี่ย

จากวิกิพีเดีย สารานุกรมเสรี

ฟังก์ชันที่มีความต่อเนื่องบนช่วง [a, b
แคลคูลัสเวกเตอร์ เป็นแขนงหนึ่งของคณิตศาสตร์ ว่าด้วยการเปลี่ยนแปลงของของเวกเตอร์ในมิติที่สูงกว่าหรือเท่ากับสองมิติ เนื้อหาประกอบด้วยเทคนิคในการแก้ปัญหา และ สูตรคำนวณที่เกี่ยวข้องต่างๆ ซึ่งมีประโยชน์ใช้งานมากในทางวิศวกรรม และ ฟิสิกส์
สนามเวกเตอร์ ใช้หมายถึง การระบุค่าเวกเตอร์ให้กับทุกๆ จุดในปริภูมิที่พิจารณา เช่นเดียวกับ สนามสเกลาร์ ซึ่งเป็นการระบุค่าสเกลาร์ให้กับทุกๆ จุดในปริภูมิ เช่น อุณหภูมิของน้ำในสระ เป็นสนามสเกลาร์ โดยเป็นการระบุค่าอุณหภูมิ ซึ่งเป็นปริมาณสเกลาร์ให้กับแต่ละตำแหน่ง ส่วนการไหลของน้ำในสระนั้นเป็นสนามเวกเตอร์ เนื่องจากการไหลของน้ำที่แต่ละจุดนั้นจะถูกระบุด้วย เวกเตอร์ความเร็ว
ตัวดำเนินการที่สำคัญในแคลคูลัสเวกเตอร์:
  • เกรเดียนต์ (gradient) ใช้สัญลักษณ์ \,\operatorname{grad}~\varphi\, หรือ \,\nabla\varphi\, : เป็นตัวดำเนินการใช้วัดอัตรา และ ทิศทาง ความเปลี่ยนแปลงของสนามสเกลาร์ ดังนั้นเกรเดียนต์ของสนามสเกลาร์ จะได้เป็นสนามเวกเตอร์
  • ไดเวอร์เจนซ์ (divergence) ใช้สัญลักษณ์ \,\operatorname{div}~\vec F\, หรือ \,\nabla \cdot \vec F\, : เป็นตัวดำเนินการใช้วัด ความลู่เข้า หรือ ลู่ออก(เป็นจุดกำเนิดสนาม)ของ สนามเวกเตอร์ ณ จุดใดๆ
  • เคิร์ล (curl) ใช้สัญลักษณ์ \,\operatorname{curl}~\vec F\, หรือ \,\nabla\times\vec F\, : เป็นตัวดำเนินการใช้วัดระดับความหมุนวน ณ จุดใดๆ โดย เคิร์ลของสนามเวกเตอร์ จะได้เป็นอีกสนามเวกเตอร์หนึ่ง
ตัวดำเนินการอีกตัวหนึ่งคือ ตัวดำเนินการลาปลาซ ได้จากการประยุกต์ ไดเวอร์เจนซ์ และ เกรเดียนต์ รวมกัน
ทฤษฎีที่สำคัญที่เกี่ยวข้องกับตัวดำเนินการดังกล่าว คือ
การวิเคราะห์เหล่านี้สามารถทำความเข้าใจได้ไม่ยาก โดยการใช้วิธีการทางเรขาคณิตเชิงอนุพันธ์ (แคลคูลัสเวกเตอร์ เป็นสาขาย่อยหนึ่งของ เรขาคณิตเชิงอนุพันธ์)

ในคณิตศาสตร์ กฎผลคูณของแคลคูลัส ซึ่งเราอาจเรียกว่า กฎของไลบ์นิซ (ดูการอนุพัทธ์) ควบคุมอนุพันธ์ของผลคูณของฟังก์ชันที่หาอนุพันธ์ได้
ซึ่งอาจเขียนได้ดังนี้
\,\! (fg) '=f'g+fg'
หรือด้วยสัญกรณ์ไลบ์นิซดังนี้
ใน แคลคูลัส กฎผลหาร คือวิธีการหาอนุพันธ์ ของ ฟังก์ชัน ซึ่งเป็นผลหาร ของอีกสองฟังก์ชัน ซึ่งหาอนุพันธ์ได้
ถ้าฟังก์ชันที่เราต้องการหาอนุพันธ์ f(x) สามารถเขียนในรูป
f(x) = \frac{g(x)}{h(x)}
และ h(x) ≠ 0; ดังนั้น กฎนี้กล่าวว่า อนุพันธ์ของ g(x) / h(x) เท่ากับ ตัวส่วน คูณกับ อนุพันธ์ของ ตัวเศษ ลบกับ ตัวเศษ คูณกับอนุพันธ์ของ ตัวส่วน ทั้งหมดหารด้วยกำลังสองของตัวส่วน ดังนี้
f'(x)=\frac{g'(x)h(x) - g(x)h'(x)}{{h(x)}^2}.
หรือโดยละเอียดกว่านี้แล้ว สำหรับ x ใดๆ ในเซตเปิด ที่มีจำนวน a และ h(a) ≠ 0 และทั้ง g '(a) และ h '(a) หาค่าได้ ดังนั้น f '(a) จะหาค่าได้ดังนี้
f'(a)=\frac{g'(a)h(a) - g(a)h'(a)}{h(a)^2}


ในวิชาแคลคูลัส กฏลูกโซ่ (อังกฤษ: Chain rule) คือสูตรสำหรับการหาอนุพันธ์ของฟังก์ชันคอมโพสิต
เห็นได้ชัดว่า หากตัวแปร y เปลี่ยนแปลงตามตัวแปร u ซึ่งเปลี่ยนแปลงตามตัวแปร x แล้ว อัตราการเปลี่ยนแปลงของ y เทียบกับ x หาได้จากผลคูณ ของอัตราการเปลี่ยนแปลงของ y เทียบกับ u คูณกับ อัตราการเปลี่ยนแปลงของ u เทียบกับ x
สมมติให้คนหนึ่งปีนเขาด้วยอัตรา 0.5 กิโลเมตรต่อชั่วโมง อุณหภูมิจะ ลดต่ำลงเมื่อระดับความสูงเพิ่มขึ้น สมมติให้อัตราเป็น ลดลง 6 °F ต่อกิโลเมตร ถ้าเราคูณ 6 °F ต่อกิโลเมตรด้วย 0.5 กิโลเมตรต่อชั่วโมง จะได้ 3 °F ต่อชั่วโมง การคำนวณเช่นนี้เป็นตัวอย่างของการประยุกต์ใช้กฎลูกโซ่
ในทางพีชคณิต กฎลูกโซ่ (สำหรับตัวแปรเดียว) ระบุว่า ถ้าฟังก์ชัน f หาอนุพันธ์ได้ที่ g(x) และฟังก์ชัน g หาอนุพันธ์ได้ที่ x คือเราจะได้ f \circ g = f(g(x)) ดังนั้น
 \frac {df} {dx} = \frac {d} {dx} f(g(x)) = f'(g(x)) \cdot g'(x)
นอกจากนี้ ด้วยสัญกรณ์ของไลบ์นิซ กฎลูกโซ่เขียนแทนได้ดังนี้:
\frac {df}{dx} = \frac {df} {dg} \frac {dg}{dx}
เมื่อ \frac {df} {dg} ระบุว่า f เปลี่ยนแปลงตาม g เหมือนเป็นตัวแปรหนึ่ง.
ในการหาปริพันธ์ ส่วนกลับของกฎลูกโซ่คือการหาปริพันธ์โดยการแทนค่า




The general power rule

กฎเลขยกกำลังทั่วไปสามารถนำมาใช้กับกฎลูกโซ่ได้

[แก้] Example I

พิจารณา f(x) = (x2 + 1)3. f(x) เทียบได้กับ h(g(x)) โดยที่ g(x) = x2 + 1 และ h(x) = x3 ดังนั้น
f'(x) = 3(x2 + 1)2(2x)

= 6x(x2 + 1)2

[แก้] Example II

ในการหาอนุพันธ์ของฟังก์ชันตรีโกณมิติ
f(x) = sin(x2),
เราสามารถเขียน f(x) = h(g(x)) ด้วย h(x) = sinx และ g(x) = x2 จากกฎลูกโซ่ จะได้
f'(x) = 2xcos(x2)
เนื่องจาก h'(g(x)) = cos(x2) และ g'(x) = 2x

[แก้] กฎลูกโซ่สำหรับหลายตัวแปร

กฎลูกโซ่ใช้ได้กับฟังก์ชันหลายตัวแปรเช่นกัน ตัวอย่างเช่น ถ้าเรามีฟังก์ชัน f(u(x,y),v(x,y)) โดยที่
u(x,y) = 3x + y2 และ v(x,y) = sin(xy)
ดังนั้น
 {\partial f \over \partial x}={\partial f \over \partial u}{\partial u \over \partial x}+{\partial f \over \partial v}{\partial v \over \partial x}=3 + \cos(xy)y

[แก้] บทพิสูจน์กฎลูกโซ่

ให้ f และ g เป็นฟังก์ชัน และให้ x เป็นจำนวนที่ f สามารถหาอนุพันธ์ได้ที่ g(x) และ g หาอนุพันธ์ได้ที่ x ดังนั้น จากนิยามของการหาอนุพันธ์ได้ จะได้
 g(x+\delta)-g(x)= \delta g'(x) + \epsilon(\delta) \, ซึ่ง  \frac{\epsilon(\delta)}{\delta} \to 0 \, ขณะที่ \delta\to 0.
ในทำนองเดียวกัน
 f(g(x)+\alpha) - f(g(x)) = \alpha f'(g(x)) + \eta(\alpha) \, ซึ่ง \frac{\eta(\alpha)}{\alpha} \to 0 \, ขณะที่ \alpha\to 0. \,
จะได้
 f(g(x+\delta))-f(g(x))\, = f(g(x) + \delta g'(x)+\epsilon(\delta)) - f(g(x)) \,

 = \alpha_\delta f'(g(x)) + \eta(\alpha_\delta) \,
ซึ่ง \alpha_\delta = \delta g'(x) + \epsilon(\delta) \, จะเห็นว่าขณะที่ \delta\to 0 นั้น \frac{\alpha_\delta}{\delta}\to g'(x) และ \frac{\eta(\alpha_\delta)}{\delta}\to 0 ดังนั้น
 \frac{f(g(x+\delta))-f(g(x))}{\delta} \to g'(x)f'(g(x)) ขณะที่ \delta \to 0

[แก้] กฎลูกโซ่พื้นฐาน

กฎลูกโซ่นั้นเป็นคุณสมบัติพื้นฐานของนิยามของอนุพันธ์ทั้งหมด เช่น ถ้า E F และ G เป็น ปริภูมิบานาค (รวมไปถึงปริภูมิยูคลิดด้วย) และ f : EF และ g : FG เป็นฟังก์ชัน และถ้า x เป็นสมาชิกของ E ซึ่ง f หาอนุพันธ์ได้ที่ x และ g หาอนุพันธ์ได้ที่ f(x) แล้ว อนุพันธ์ (อนุพันธ์เฟรเชต์) ของฟังก์ชันคอมโพสิต g o f ที่ x จะเป็นดังนี้
\mbox{D}_x\left(g \circ f\right) = \mbox{D}_{f\left(x\right)}\left(g\right) \circ \mbox{D}_x\left(f\right).
สังเกตว่าอนุพันธ์นี้เป็นการแปลงเชิงเส้น ไม่ใช่ตัวเลข ถ้าการแปลงเชิงเส้นแทนด้วยเมทริกซ์ (จาโคเบียนเมทริกซ์) การรวมทางด้านขวาจะกลายเป็นการคูณเมทริกซ์
การกำหนดกฎลูกโซ่ที่ชัดเจนสามารถทำได้จากวิธีที่เป็นทั่วไปมากที่สุด คือ ให้ M N และ P เป็นแมนิโฟลด์ Ck (หรือบานาคแมนิโฟลด์) และให้
f : MN และ g : NP
เป็นการแปลงที่หาอนุพันธ์ได้ อนุพันธ์ของ f แทนด้วย df จะเป็นการแปลงจากปมสัมผัสของ M ไปยังปมสัมผัสของ N และสามารถเขียนแทนด้วย
\mbox{d}\left(g \circ f\right) = \mbox{d}g \circ \mbox{d}f.
ด้วยวิธีนี้ รูปแบบของอนุพันธ์และปมสัมผัสจะถูกมองเห็นในรูปฟังก์เตอร์บน Category ของแมนิโฟลด์ C โดยมีการแปลง C เป็นสัณฐาน

1 ความคิดเห็น: